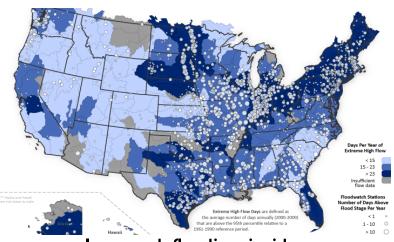
Flood Mitigation Bond

Morgan Stanley Sustainable Investing Challenge April 17, 2015

Julie Andress, Meaghan McGrath, Heather West, & Sarah Wilson

Hurricane Sandy in New York City

Consistent Threat of Flooding



Failing grey infrastructure

Disappearing natural habitats

Increased flooding incidents

20 million people & \$2.9 trillion GDP at risk

Natural Infrastructure

A scientifically proven approach to flood mitigation

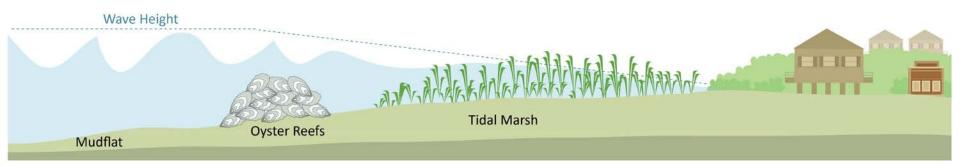
Wetlands

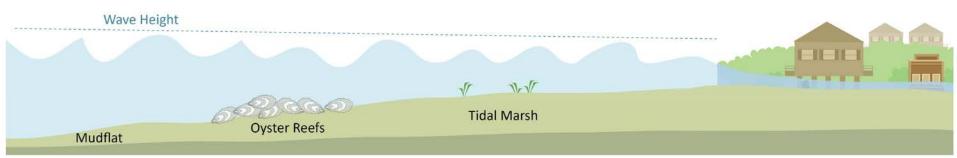
Oyster Beds

Dunes and Beaches

According to the Army Corps and FEMA, each \$1 spent on natural infrastructure results in future savings of \$4 in comparison to grey infrastructure.

This is due to lower project and maintenance costs.


How Natural Infrastructure Works



Waves decreased with healthy coastal habitats.

Waves with degraded coastal habitats.

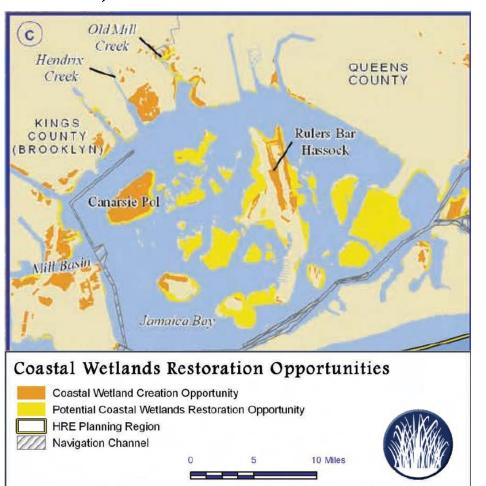
The Opportunity

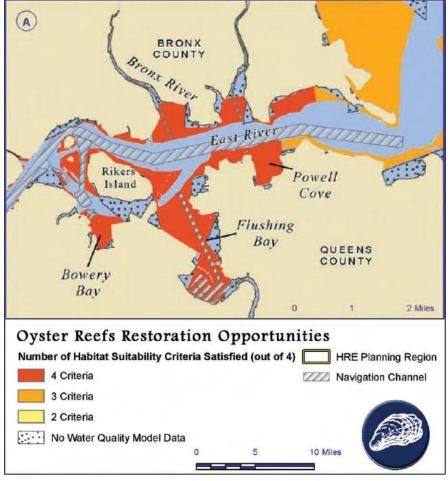
The New York Tri-State Area

- Demand for capital
- Restoration opportunities
- Political will
- Protecting high value property

Our Solution

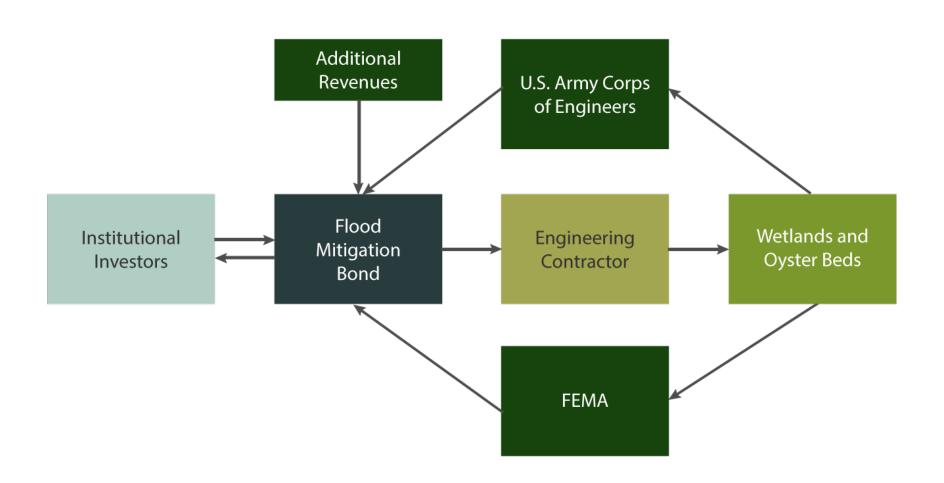
- \$200 million bond offering
- 1,700 acres of degraded land restored
- 5.7% coupon + principal, 20 years
- Targeting institutional investors


Project Pipeline



14,044 Acres of Wetlands

50,000 Acres of Oyster Beds



Bond Structure

Revenue Stream #1

Principal from U.S. Army Corps of Engineers

Benefits to Army Corps

- Decrease in future 0&M expenses
- Delayed capital obligations

Benefits to Investors

- Fixed annual payments based on project completion
- Payment from U.S. Federal Government

Revenue Stream #2

5.2% Coupon from the Federal Emergency Management Agency

Benefits to FEMA

- More than \$8.6 million annual savings accrued in perpetuity
- Increased stability and predictability for budget allocations

Benefits to Investors

- \$8.6 million annual savings generated during the life of the bond
- Fixed annual payments based on project completion
- Payment from U.S. Federal Government

Revenue Stream #3

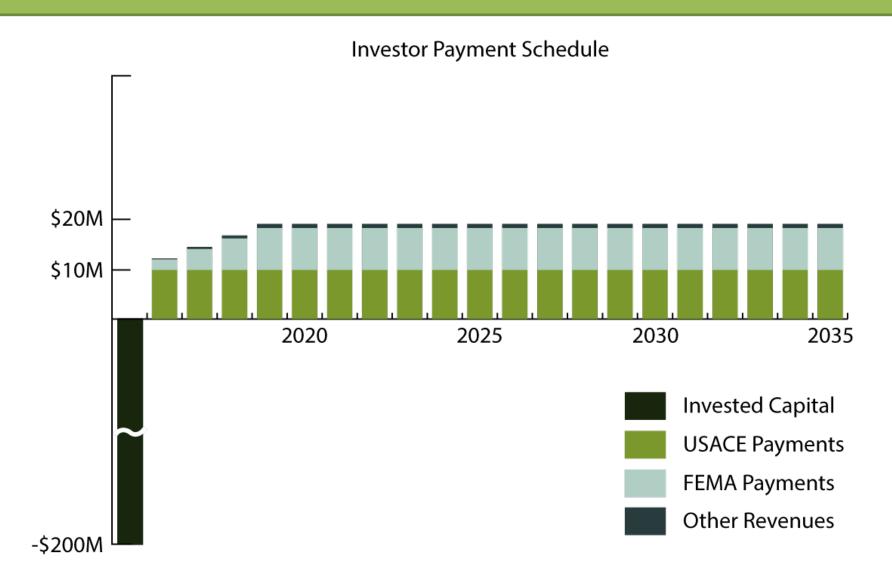
0.5% Coupon from Additional Revenue

Includes

 Recreation fees, fishing licenses, environmental credits, and oyster sales

Benefits to Investors

 Additional sources of revenue from monetizing environmental impact benefits



Returns & Distribution

Widespread Impact

- 1,700 acres of restored coastline
- Nutrient and pollution uptake and retention
- Wildlife habitat
- Enhanced biodiversity

- Resilient communities
- Protection for diverse socioeconomic groups
- 1,700 acres available for public use

- Job creation
- Increased property values
- Fewer flood related business closures
- Strengthened recreation, tourism, and fishing industry

Risk Management

Risk

Cooperation of Key Partners

Mitigation Strategy

- Army Corps and FEMA benefit from projects in perpetuity
- Prioritize Army Corps and FEMA high risk areas
- Build consensus with real estate developers, state, and local governments

Volatility of Flood Events

- Volatility-smoothing through long-term, 20-year duration
- Contract for fixed payments based on project completion

Default on Payments

- Guarantee from foundation (e.g. Rockefeller Foundation)
- Upfront contracts with Army Corps & FEMA

Performance Management

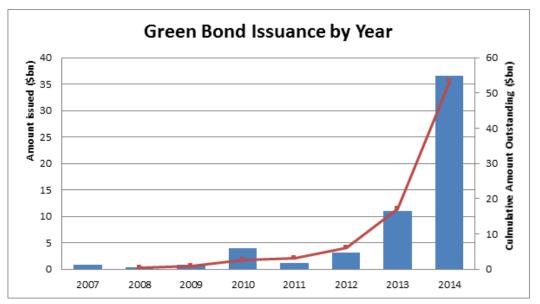
- Payments based on historical data and sophisticated modeling
- Partnership with NGO (e.g, The Nature Conservancy) to monitor performance of natural infrastructure

Investment Criteria

Publicly Owned Land

Large Adjacent Areas

Degraded Sites Suitable for Restoration


FEMA Special Flood Hazard Areas

Scalability: Market

Flood Market

- Army Corps spends \$1.17
 billion on new infrastructure
- FEMA spends \$4 billion on insurance claim payouts
- Globally, \$20 billion is spent on flood disaster relief each year

Scalability: Geography

Rivers
United States and Global

Coral Reefs

Mexico, Belize, Honduras,
and Guatemala

Mangroves
China, Vietnam, and
Japan

Our Team

Julie Andress

MBA

- Investment banking at Morgan Stanley
- Construction management at GBBN Architects

Meaghan McGrath

MBA/Master of Environmental Management

- Coastal project development at Blue Earth Consultants
- Real assets investing at Sonen Capital

Heather West

MBA/Master of Forestry

- Land investment at Beartooth Capital
- Natural resource management at The Nature Conservancy

Sarah Wilson

MBA/Master of Environmental Management

- Project finance at Bank of America Merrill Lynch
- Entrepreneurship in sustainable food

Questions and Thank You's

DBL INVESTORS

DOUBLE BOTTOM LINE VENTURE CAPITAL

Protecting nature. Preserving life.*

Asset Management Partners

J.H. WHITNEY & CO.

J.H. WHITNEY CAPITAL PARTNERS, LLC

Appendix Slides

Bond Assumptions

Basic information on the bond	
Annual Coupon	5.7%
Duration of bond	20 Years
Size of bond offering	\$201.5MM USD
Fee collected (from principal)	1.1%

Detailed information on the bond	
# of wetland acres restored	500
# of oyster bed acres restored	1200
Cost to restore 1 acre of wetland	\$277K USD
Cost to restore 1 acre of oyster bed	\$52K USD
Property protection per acre of wetlands per year	\$13K USD
Property protection per acre of oyster beds per year	\$5K USD
Proportion of Property Insurance that is Subsidized by FEMA	67%
Construction Period (# of Years)	4
Additional revenue per acre per year	\$500 USD

Competitive Research on Bonds

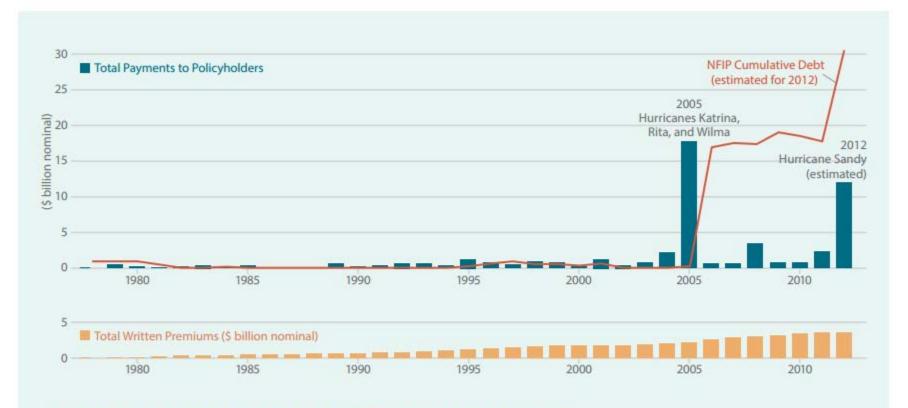
Issuer Name	Annual	Offering	Duration
	Coupon (%)		(Years)
Lowe's Cos Inc	5.50	500	30
Consolidated Edison Co of New York Inc	5.25	125	30
Consolidated Edison Co of New York Inc	5.30	350	30
Archer-Daniels-Midland Co	5.38	600	30
Southern California Edison Co	5.35	350	30
South Jersey Gas Co	5.45	10	30
Connecticut Light & Power Co/The	5.63	100	30
Public Service Co of New Hampshire	5.60	50	30
Verizon Communications Inc.	4.75	850	20
CF Industries Inc	5.15	750	20
Fedex Corp	4.90	500	20
Long Island New York Power Authority	5.00	578	20
Puerto Rico Commonwealth Aqueduct and Sewer			
Authority	5.25	1800	20
General Electric Capital Corp	4.25	19	20
Average	5.20	470	

Criteria includes:

- Long term duration (20-30 years)
- Non-callable bonds expire at maturity

Target Institutional Investors

Academic



National Flood Insurance Program Payments

FIGURE 5. National Flood Insurance Program Debt Grows

The National Flood Insurance Program has fallen deeper in debt since the payouts after Hurricane Katrina and most recently the costs of Hurricane Sandy. As of November 2012, the program was more than \$20 billion in debt to the U.S. Treasury (GAO 2013), and that figure is likely to rise once all the Sandy claims are settled.

Sources: FEMA 2013a; estimate for 2012 NFIP payments for Hurricane Sandy from King 2013; estimate for 2012 NFIP debt based on its borrowing limit of \$30.4 billion set by the Hurricane Sandy Relief Act.

NFIP is one of the largest financial obligations of the U.S. government.

Coastal storm damage reduction Features	Relevant Coastal storm damage reduction and Resilience Processes and Functions Provided	Potentially Important Performance Factors	Potential Coastal Risk Reduction and Socioeconomic and Environmental Resilience Outcomes	Potential Additional Socioeconomic and Environmental Benefits (Direct and Indirect)
Salt Marshes	 Wave attenuation and/or dissipation Sediment stabilization Raw material provision (sands of particular sizes and mineral proportions) 	 Wave height Wave period Water level Marsh elevation Marsh continuity Vegetation type Vegetation height Vegetation density 	 Coastal storm damage reduction Shoreline erosion control Water quality regulation Tourism Recreation Education 	 Ecosystem diversification (biodiversity) Enhance and diversify food production Nutrient and pollution uptake and retention Provide aesthetic landscapes Provide suitable reproductive habitat and nursery grounds
Beaches	Wave attenuation and/or dissipation Nearshore sediment cycle Raw materials (sands of particular sizes and mineral proportions) Store and filter water through sand	Beach slope Berm elevation Sediment grain size Berm width Presence of backing dune Sediment supply Presence of structures Wave height Wave period Water level Storm duration	Coastal storm damage reduction Shoreline erosion control Tourism Recreation Education	Provide unique and aesthetic landscapes Flood protection Improve water quality Ecosystem diversification (biodiversity) Potential beneficial use of dredged material Biological productivity and diversity Wildlife habitat creation and preservation
Dunes	Wave attenuation and/or dissipation Supports sediment cycle Raw material provision (sands of particular sizes and mineral proportions) Store and filter water through sand	 Dune height Dune crest width Dune field width Variability in dune height Wave height Wave period Water level Storm duration Presence of vegetation Berm width Beach slope 	 Coastal storm damage reduction Shoreline erosion control Water catchment and purification Aquifer recharge Tourism Recreation Education 	Improve water quality Ecosystem diversification (biodiversity) Increase recreational opportunities Reduction of unwanted sediment sources Increase Information and knowledge Generate biogeochemical activity and productivity Wildlife habitat creation and preservation Provide aesthetic landscapes